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Studying the Liberation Points of the Sun-
Earth-Moon System   

A.H. Ibrahim, M.N. Ismail, K.H.I. Khalil 

Abstract— the restricted four-body problem is formulated; liberation points for the system are obtained and compared with those of 
the three-body problem. A MATHEMATICA code was constructed to compute trajectories for the positioning of spacecraft at any 
liberation points by numerical integration, using the Runge-Kutta forth order method. The Sun-Earth-Moon model is used as the main 
system, with the spacecraft as the fourth body. Gravitational forces are considered, while zero velocity curves for the restricted three-
body (Earth-Moon-Spacecraft) and restricted four-body (Sun-Earth-Moon-Spacecraft) problems are obtained and plotted. 
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1. INTRODUCTION  
The four-body problem has been treated as one of the 

important objects of celestial mechanics. Work on this 
issue commenced at the end of the nineteenth century 
when Hill was the first to discover a periodic solution to 
the n-body problem. Poincare, in developing a method of 
treating the three-body problem, found an infinite number 
of periodic solutions. The four-body problem was also 
tackled by Moulton [15], who happened upon many 
particular solutions for the motion of the three-body 
problem, such as Jacobi integrals and liberation points. 
Tapley [18] studied the motion of a space vehicle 
positioned at L4 or L5 of the Earth’s moon, using a model 
that included the perturbing effects of radiation pressure 
and the gravitational attraction of the Sun. He also invoked 
Runge-Kutta integration to obtain the trajectories of 
spacecraft around liberation points. The existence of 
stable, periodic orbits around the triangular point of the 
Earth-Moon system, which is perturbed by the Sun, was 
determined by Schechter and Kolenkiewicz [17,14], who 
calculated a periodic solution for the Sun-Earth-Moon 
system using numerical computations. In another study, 
Farquhar [9] studied the restricted four-body problem 
(Sun, Earth, Moon, satellite), finding that the liberation 
point L2 shifted by 295.10 km from L2, while for the 
Earth-Moon system, Guzman [12] found that L2 shifted by 
300 km, which is the same result as that obtained in this 
work. Brouke [5] used numerical integration with the 
Runge-Kutta method to obtain the periodic orbits for the 
general three-body problem. There are several types of 
four-body model, which have been studied by a variety of 
authors; for example, Pernicka, Bell, Guzman and others 
[16,4,12] used the Sun-Earth-Moon model to study the 
four-body problem. In this model, the Sun, Earth, and  

 
 
 
 

 
Moons are treated as distinct particles of finite mass. 
Cronin, Gomez, Jorba, and Gabern [8,10, 11,13] studied  
 

 
the four-body problem using the bi-circular model, which 
considers the Earth and the Moon as two primaries 
revolving in circular orbits around their barycenter, while 
the Sun is considered as a third body moving in a circular 
orbit around the central masses of the Earth-Moon-Sun 
system; the three primaries move in the same plane. 
Meanwhile, Andreu [1] studied the quasi-bi-circular model 
in his PhD thesis. Baltagiannis, Papadakis, Burgos, and 
Delgado [2,3,6,7] studied the restricted four-body problem 
as equal masses located at the vertices of an equilateral 
triangle, which attain equilibrium points, zero velocity 
curves, and families of periodic orbits. In this paper, the 
Sun-Earth-Moon model is used to tackle the four-body 
problem. 

2. RESTRICTED FOUR-BODY PROBLEM 
To obtain the liberation points of the four-body problem, 

the Sun-Earth-Moon-spacecraft system is considered as 
follows: MS is the mass of the Sun, ME is the mass of the 
Earth, MM is the mass of the Moon, while m is the 
infinitesimal mass of the spacecraft, and CM is the center 
of the mass of the Earth and Moon. The Sun, Earth, and 
Moon all rotate around the barycenter of the entirety of 
system B. The spacecraft moves near the Earth-Moon 
system. 

 
Figure 1The Earth-Moon-Sun Configuration in Rotating Coordinates 

Figure 1 shows inertial and synodicalframes for Sun-
Earth-Moon-spacecraft system. x, y, and z is the inertial 
coordinates for the system, with the origin B at the mass 
center of the four-body system.  ξ,η  and ζFrame rotate 
with angular velocity Ω about the barycenter B whichθ =
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ω t . The equations of motion in the inertial coordinates 
become:  

�̈�𝒙

=
−𝑮𝑮𝑴𝑴𝑺𝑺 (𝒙𝒙 − 𝒙𝒙𝒔𝒔)

[(𝒙𝒙 − 𝒙𝒙𝑺𝑺)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑺𝑺)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑺𝑺)𝟐𝟐]
𝟑𝟑
𝟐𝟐

−
−𝑮𝑮𝑴𝑴𝑬𝑬(𝒙𝒙 − 𝒙𝒙𝑬𝑬)

[(𝒙𝒙 − 𝒙𝒙𝑬𝑬)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑬𝑬)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑬𝑬)𝟐𝟐]
𝟑𝟑
𝟐𝟐

−
−𝑮𝑮𝑴𝑴𝑴𝑴(𝒙𝒙 − 𝒙𝒙𝑴𝑴)

[(𝒙𝒙 − 𝒙𝒙𝑴𝑴)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑴𝑴)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑴𝑴)𝟐𝟐]
𝟑𝟑
𝟐𝟐

(1) 

 

�̈�𝒚
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−𝑮𝑮𝑴𝑴𝑺𝑺 (𝒚𝒚 − 𝒚𝒚𝑺𝑺)

[(𝒙𝒙 − 𝒙𝒙𝑺𝑺)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑺𝑺)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑺𝑺)𝟐𝟐]
𝟑𝟑
𝟐𝟐

−
−𝑮𝑮𝑴𝑴𝑬𝑬(𝒚𝒚 − 𝒚𝒚𝑬𝑬)

[(𝒙𝒙 − 𝒙𝒙𝑬𝑬)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑬𝑬)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑬𝑬)𝟐𝟐]
𝟑𝟑
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[(𝒙𝒙 − 𝒙𝒙𝑴𝑴)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑴𝑴)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑴𝑴)𝟐𝟐]
𝟑𝟑
𝟐𝟐

 (𝟐𝟐) 

�̈�𝒛

=
−𝑮𝑮𝑴𝑴𝑺𝑺 (𝒛𝒛 − 𝒛𝒛𝑺𝑺)

[(𝒙𝒙 − 𝒙𝒙𝑺𝑺)𝟐𝟐 + (𝒚𝒚 − 𝒚𝒚𝑺𝑺)𝟐𝟐 + (𝒛𝒛 − 𝒛𝒛𝑺𝑺)𝟐𝟐]
𝟑𝟑
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𝟑𝟑
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−
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𝟑𝟑
𝟐𝟐

(𝟑𝟑) 

The canonical units of masses and distances are used, 
dividing all masses by the total mass of the Earth-Moon 
and dividing all distances by that between the Earth and 
Moon, so that the gravitational constant and mean motion 
of the Earth-Moon are taken as being in unity. 

The masses and distances of the Sun, Earth, and Moon are: 
Mass of the Sun, MS = 1.99 * 10 ^ 30 kg; Mass of the 
Earth, ME = 5.98 * 10 ^ 24 kg; Mass of the Moon, MM = 
7.35 * 10 ^ 22 kg; Earth-Moon distance, d1 = 3.844 * 10 ^ 
5 km; Earth-Sun distance, d2 = 1.496 * 10 ^ 8 km.Then, 
the masses of the Earth, Moon, and Sun in the canonical 
system are: Mass of the Earth = μE = 1 − μ = ME  

ME  +MM  
=

0.9878715 ; Mass of the Moon =μM = μ = ME  
ME  +MM  

=

0.0121506683 ; Mass of the Sun = μS = MS  
ME  +MM  

=
328900.48; the distance between the Sun and the center 
of the system = Rs = 389.1723985. 

The coordinates of the Earth, Moon, and Sun, with respect 
to B, are given by: 

xE = μ cos t,     yE =  μ sin t,                           zE = 0; 

xM = (μ − 1) cos t,   yM = (μ − 1) sin t,          zM = 0 ; 

xS = RS cosθ  ,            yS = RS sin θ ,                    zS = 0. 

The distances of the spacecraft from the Sun, Earth, 
and Moon, in rotating coordinates, are given as: 

R1 = �(ξ − ξS)2 + (η − ηS)2 + ζ2   ; 
R2 = �(ξ + μ)2 + η2 + ζ2   ; 

R3 = �(ξ − μ + 1)2 + η2 + ζ2    

Now, the transformation between the x, y, and z  frames 
and the ξ,η, and ζ frames can be represented by: 

�
x
y
z
� = �

cosθ sinθ 0
− sin θ cosθ 0

0 0 1
� �
ξ
η
ζ
�   

The equations of motion of the spacecraft in the rotating 
system become: 
 
ξ̈ − 2η̇ − ξ = − (ξ−μ)(1− μ)

R2
3 − (ξ−1−μ)μ

R3
3 − (ξ−RS cos θ)μS

R1
3  , (4) 

     
η̈ + 2ξ̇ − η = − μ

R2
3 η −

(1− μ)η
R3

3 − (η−RS sin θ)μS
R1

3 ,        (5) 
      
ζ̈ = − ζμ

R2
3 −  ζ(1− μ)

R3
3 −  ζμS

R1
3                                               (6)

      
   

3. JACOBI INTEGRAL 
The last equations could be put in these formulae: 

ξ̈ − 2η̇ =
∂U
∂ξ

 ,                                                              (7) 

η̈ + 2ξ̇ =
∂U
∂η

,                                                                 (8) 

ζ̈ = ∂U
∂ζ

                                                                                 (9)
    

Where            U = 1− μ
R𝕤𝕤 E

+ μ
R𝕤𝕤 M

+ μS
R𝕤𝕤 S

+ ξ2+η2

2
 

is the potential in the rotating coordinate system; by 
multiplying (7), (8), and (9) by ξ̇, η̇ and ζ̇ 

respectively, and adding the equation, this becomes: 

ξ̈ξ̇ + η̈η̇ +  ζ̈ζ̇ =
∂U
∂ξ
∂ξ
∂t +  

∂U
∂η

∂η
∂t +

∂U
∂ζ
∂ζ
∂t ,                            (10) 

1
2

d
dt
�ξ̇2 + η̇2 + ζ̇2� =

dU
dt

                                           (11)    

�ξ̇2 + η̇2 + ζ̇2� = 2U − C                                           (12) 
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This equation is called the Jacobi integer; when velocity 
equals zero, equation (12) becomes 

2U = C                                                                            (13)   

which we can obtain from this equation on zero velocity 
curves. Figures (2) and (3) display the counterplots for the 
Sun-Earth-Moon and Earth-Moon systems. 

 

Figure 2 Counterplot for Sun-Earth-Moon system 

.  

Figure 3 Counterplot for Earth-Moon system. 

4. LIBERATION POINTS FOR RESTRICTED 
FOUR-BODY PROBLEM 

The condition of equilibrium pints is deduced when 
making the velocities’ and accelerations’ components 
equal to zero is given by equations (4), (5), and (6). 

ξ = −
(ξ − μ)(1 −  μ)

R𝕤𝕤 E
3 −

(ξ − 1 − μ)μ
R𝕤𝕤 M

3 −
(ξ − RS cosθ)μS

R𝕤𝕤 S
3  ,          (14) 

 η = − μ
R𝕤𝕤E

3 η −
(1− μ)η

R𝕤𝕤 M
3 − (η−RS sin θ)μS

R𝕤𝕤 S
3 ,                        (15)

  

 0 = − ζμ
R𝕤𝕤E

3 −  ζ(1− μ)
R𝕤𝕤 M

3 −  ζμS
R𝕤𝕤 S

3                        (16)
                            
To determine the trajectories of the spacecraft near the 
liberation points, a code was constructed using the 
MATHEMATICA program to solve the equations of 
motion of the spacecraft at the liberation points by 

numerical integration using the Runge-Kutta forth order 
method.  

Table 1 displays the non-dimensional kilometers of 
distances for the liberation points of the Earth-Moon 
system; the liberation points after the effect of the Sun are 
considered. Note that in the table, the shift on L2 has the 
same value as that attained by Guzman (2001). 

Table 1 Liberation points for Earth-Moon system and Sun-Earth-Moon system 

Liberatio

n points 

Earth-Moon Non-

dimensional (km) 

Sun-Earth-Moon 

Non-dimensional 

(km) 

Shift 

Km 

L1 0.83692 32171 0.83641 32152 194 

L2 1.155682

1 

444244 1.1549 443944 300 

L3 -

1.005062 

-

386346 

-1.0069 -38705 706 

L4 (0.83692

, 

0.99387) 

(32171, 

382043

) 

(0.8364, 

0.9924) 

(32151, 

381479

) 

(198, 

564) 

L5 (0.83692

, 

-.99387) 

(32171,-

38204) 

(0.8364,

-0.9924) 

(32151,

- 

38148) 

(198,

-564) 

Figures 4-7 display comparisons between the trajectories of 
spacecraft near liberation points L1-L4 in the Earth-Moon 
and Sun-Earth-Moon systems. In Figure 4, the solid curves 
represent trajectories of spacecraft, starting at L1 in the 
Earth-Moon system, while the dashed curves represent 
trajectories of spacecraft near L1 for the Earth-Moon 
system after taking into account the effect of the Sun in 
calculations. Note that the dashed curves shift toward the 
left around the solid curves; the same phenomenon can be 
seen in Figure 5. In Figure 6, the motion of the spacecraft 
starts from an “at rest” position at the liberation points; at 
L3, we observe that the spacecraft is still at the rest point 
for period 60in the Earth-Moon model, but the far rest point 
is after period 16 when the effect of the Sun is considered. 

 

Figure 4 Trajectories of spacecraft near L1 for two systems 
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Figure 5 Trajectories of spacecraft near L2 for two systems 

 

Figure 6Trajectories of spacecraft near L3 for two systems 

 

Figure 7 Trajectories of spacecraft near L4 for Earth-Moon system 

 

 

Figure 8 Trajectories of spacecraft near L4 for Sun-Earth-Moon system 

5. CONCLUSION 
 In this study, the equations of motion for the 
restricted four-body problems were deduced. These 

equations are applicable to two systems: The Earth-Moon 
and Sun-Earth-Moon systems. The locations of the 
liberation points for the former were obtained, as were 
those of the latter, after taking the effect of the Sun into 
account. The shift between the two models was 
mentioned. Zero velocity curves were deduced and plotted 
for both systems, while the trajectories for the spacecraft 
near the liberation points of the Earth-Moon system were 
computed and plotted using the Sun-Earth-Moon system. 
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